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Abstract: Sadi Carnot stated that the efficiency of a reversible Carnot cycle is independent of the properties of 
the material used to run the cycle. Using this statement, all textbook discussions of the Carnot cycle use an ideal 
gas. Here, in contrast, we consider, in the spirit of the Caratheodory approach, a general analysis centered on the 
existence of an integrating factor that transforms an inexact differential into an exact differential. Also we derive 
a general relation between temperature and volume along an adiabatic path. Using these two results, we obtain 
the efficiency of the Carnot cycle, η = 1 � TC/TH, for any equation of state. 

Introduction 

In his only publication in 1824, �Réflexions sur la Puissance 
Motrice du Feu, et sur les Machines Propres à Développer 
cette Puissance� [1], Nicolas-Léonard-Sadi Carnot presented a 
general analysis of heat engines. In his paper, Carnot stated 
that the maximum amount of work is obtained by using any 
reversible cyclic engine, and that the maximum efficiency is 
independent of the material properties of the engine. Although 
Carnot did not translate his ideas into a mathematical language, 
his analysis was relevant in the development of the 
fundamental ideas that resulted in the postulation of the 
Second Law of Thermodynamics. Ten years after Carnot�s 
work was published, Emile Clapeyron published, in his only 
scientific paper, the mathematical representation of Carnot�s 
ideas [2, 3]. 

In this paper we revisit the reversible Carnot cycle and 
present an alternative derivation of the efficiency. Our analysis 
is independent of any particular relation associated with an 
equation of state. In the traditional pedagogy, most textbooks 
in their discussion of the Carnot cycle use the ideal-gas 
equation [3�8]. Using relations among variables only satisfied 
by the ideal gas, authors calculate the efficiency of the cycle. 
Now using Carnot�s ideas, the result obtained using the ideal 
gas, in principle, can be extrapolated to any equation of state 
describing the material properties of a gas. This result also 
suggests the existence of an exact differential. This approach 
leaves some students wondering and needing to believe 
Carnot�s statement. Thus, a derivation that relies on a general 
thermodynamic relation satisfied by any equation of state gives 
students a better grasp of Carnot�s statement on the material 
properties independence. 

Although some may claim that the Carnot cycle is of limited 
interest to chemists, we consider that the Carnot cycle is of 
such historical importance in the development of the Second 
Law that it cannot be overlooked. We believe that all chemists 
should have a solid understanding of the Carnot cycle. On the 
practical side, we are also aware that in many universities a 
large number of engineering students take junior-level 
chemical thermodynamics; therefore, one should include a 
thorough discussion of the Carnot cycle. 

In our own experience, we have assigned our students to 
find a relation between temperature and volume along an 

adiabat for nonideal gases. Students immediately find that 
the typical textbook derivation for the ideal gas cannot be 
extended for several equations of state. To solve this 
problem, we give them access to most of this paper, where 
the key to the solution is the derivation of the entropy along 
an adiabat. Finally, we allow some students to consider the 
general case valid for any equation of state as an 
independent project, which counts towards their final 
grade. 

In the next section we review Carnot�s reasoning, and in 
Section III we consider a general analysis of the Carnot cycle 
and its efficiency using general thermodynamic relationships 
applicable to any equation of state. In section IV we discuss 
our results. 

Carnot Theorem 

In contrast with Carnot�s reasoning, which used the 
principle of conservation of heat from the caloric theory, we 
start with the First Law, which considers that the total work 
performed by a cyclic engine is equal to: 

 W = � QH � QC (1) 

Here QH is the heat gained by the system from the hot 
reservoir, and QC is the heat lost by the system to the cold 
reservoir, that is, QC < 0. The engine efficiency, therefore, is 
the ratio between the work performed and the heat gained from 
the hot reservoir, that is, 

 1 C

H

Q
Q

η = −  (2) 

Equation 2 is the so-called Carnot theorem. 
In his work, Carnot argues that only reversible cycles are 

able to avoid heat losses due to temperature gradients between 
the system and the hot and cold reservoirs; thus, any real 
engine is prone to heat transfer. This heat transfer reduces the 
amount of heat available to do work. Consequently, the 
maximum efficiency is not achieved by real engines. Once we 
accept Carnot�s statement on the relation between reversibility 
and maximum efficiency, we have to consider that any 
reversible cyclic engine has to achieve the same maximum 
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efficiency. This corollary also implies that the maximum 
efficiency of any reversible cyclic engine is independent of the 
design and material properties of the engine; thus the 
maximum efficiency can only depend on the hot and cold 
reservoir�s temperatures. In other words  

 (C
C H

H
,

Q )f T T
Q

=  (3) 

but this ratio has to satisfy the following relations: 
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As a consequence of eq 4, the function f also has the following 
property: 

 ( ) (1
1 2 2 3

3
, ,

Q )f T T f T T
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These properties can be satisfied only if f is such that 

 ( ) ( )
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Therefore eq 3 reduces to 

 
( )
( )

C

H H

Q g T
Q g T

= C  (7) 

Now we have two options. We either follow Kelvin�s path 
or use the ideal gas as the working substance for the reversible 
Carnot cycle. In the former, Kelvin defines the absolute or 
Kelvin scale where the ratio of absolute temperature is equal to 
the ratio of heat absorbed to the heat released in a reversible 
Carnot cycle. In the latter, authors use the design independence 
property, where the analysis of any particular reversible cyclic 
engine will give us an expression for the efficiency that is valid 
for any reversible cyclic engine. In particular most textbooks 
in physical chemistry [3�13] use the material properties of the 
ideal gas to study the reversible Carnot cycle. This analysis 
yields an expression that suggests the existence of an exact 
differential. In the process, this approach does not leave a 
sense of generality, because the relations used are only 
satisfied by the ideal gas; therefore, an alternative derivation 
valid for any equation of state is desirable. 

Alternative Derivation of the Efficiency 

In this section we discuss alternative analysis of a reversible 
Carnot cycle valid for any equation of state. We begin with a 
review of the reversible Carnot cycle:  

a) gas with initial volume Vo is in contact with a hot 
reservoir at temperature TH; the gas undergoes a reversible 
isothermal expansion reaching a final volume V1. 
b) In this step the system undergoes a reversible adiabatic 
expansion from TH and V1 to TC and Vm. 
c) Next, the gas undergoes a reversible isothermal 
compression from Vm to V2. 
d) Finally, the system undergoes a reversible adiabatic 
compression from TC and V2 to TH and Vo. 
Before we calculate QH and QC, we would like to find some 

helpful general thermodynamic relationships. First, we 
consider the First Law in its differential form for the internal 
energy U, 

 dU = dQ � Pext dV (8a) 

where we are considering only PV work. Next, we consider a 
reversible process, thus we can rewrite eq 8a as: 

 dU = dQ � PdV (8b) 

where we have substituted for the external pressure, Pext, by 
the internal pressure, P, given by the equation of state. 

Next we use the general definition of specific heat to express 
dU as  

 v
T

UdU C dT dV
V
∂ = +  ∂ 

 (8c) 

where 

 v
V

UC
V
∂ ≡  ∂ 

 (9) 

In particular for an isothermal process, that is, dT = 0, and 
using eqs 8b and 8c, we can write the following relation: 

 ( )iso ,
T

UdQ P dV F V T dV
V

 ∂ = + ≡  ∂  
 (10) 

For an adiabatic process, dQ = 0, we get from eqs 8b and 8c: 

 ( ),v
T

UC dT P dV F V T dV
V

 ∂ = − + = −  ∂  
 (11) 

Now, with help of eqs 10 and 11, we can analyze a 
reversible Carnot cycle. First, we consider the isothermal 
expansion and find that the heat gained by the system as it 
expands from Vo to V1 is given by 

  (12) ( )
1

o

H,
V

H
V

Q F V T d= ∫ V
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For the reversible isothermal compression, the heat lost is 
given by: 

  (13) ( )
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m
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V

C
V

Q F V T d= ∫ V

Using eqs 12 and 13, we find the following relation for the 
heat ratio: 
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Again eq 14 is general so it is satisfied by any equation of 
state. 

For the reversible adiabatic expansion and compression we 
have the following relation: 

 ( ) ( ), ,vC V T dT F V T dV= −  (15) 

The adiabatic constraint reduces the number of independent 
variables. Thus, we could find, in principle, an expression of 
the temperature as a function of volume, that is, T(V). In other 
words, T and V satisfy the following relation:  

 ( ), constanr V T = t  (16) 

where r is a smooth function of V and T. Consequently, r has 
to satisfy the following differential relation: 

 
V T

r rdT dV
T V
∂ ∂   = −   ∂ ∂   

 (17) 

We can associate eq 15 with eq 17 by relating CV and F(V, T) 
to r, that is, 

 V
V

rC
T
∂ =  ∂ 

 (18a) 

 ( ),
T

rF V T
V
∂ =  ∂ 

 (18b) 

If we want dr to be an exact differential, eqs 18a and 18b must 
also satisfy the following equation: 

 V

VT

C F
V T

∂ ∂   =   ∂ ∂  
 (19) 

Using eqs 9 and 10, we can reduce eq 19 to 

 0
V

P
T
∂  = ∂ 

 (20) 

which is not satisfied in general; therefore, eq 15 is not an 
exact differential. 

As we can see, dQ is not an exact differential in general. In 
this case we turn to the theory of linear differential forms and 
the Caratheodory formulation of the Second Law, [15, 16] in 
which the possible existence of an integrating factor is 
considered. Without going into the more abstract and 
mathematical Caratheodory approach, we only consider an 
integrating factor, β (V, T), such that 

 V
V

rC
T

β ∂ =  ∂ 
 (21a) 
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T

rF V T
V

β ∂ =  ∂ 
 (21b) 
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C F
V T
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Moreover eq 21c reduces to a general partial differential 
equation for β,  

 0V
V

T V VT

C FC F
V T V T
β β β

 ∂∂ ∂ ∂      − + −       ∂ ∂ ∂ ∂       
=  (22) 

If we use eqs 9 and 10 in eq 22, we find 

 1 1 0V V

T V

T

P
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UF V T P
V

β β
β β

∂ 
 ∂∂ ∂     − −    ∂∂ ∂      + ∂ 

=  (23) 

where eq 23 has to be satisfied by β. 
We should emphasize that integrating factors are not unique; 

therefore, we can try some simplifications. First, we assume 
that β is only a function of temperature, that is, 

 ( )Tβ β≡  (24) 

This assumption reduces eq 23 to 

 
( )

1 1V

T

P
Td

UdT f TP
V

β
β

∂ 
 ∂  − = ≡  ∂   + ∂ 
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where f(T) is a smooth function of temperature. Second, we 
notice that for an ideal gas, f(T) = T, which means that βideal(T) 
= 1/T. Because all real gases approach the ideal gas behavior in 
the limiting case of infinitely low density, and infinitely large 
temperature, f(T) should approach T in the limiting case. 
Consequently we could generalize and assume that 

 ( ) 1T
T

β =  (26) 
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But if we use eq 26 in eq 25, we find that the following 
condition also has to be satisfied: 

 
V T

P UT
T V
∂ ∂   =   ∂ ∂   

P+  (27) 

where 
T

U
V
∂ 
 ∂ 

 is the so-called internal pressure. Also notice 

that eq 27 is a relation between the internal energy and the 
equation of state, 

 2

T V

U T
V T
∂ ∂   =   ∂ ∂   

P
T

 (28) 
T V

Using eq 28, we find that the internal energy is given by 
[14] 

( ) ( ) ( )
1

2
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,
,

V

V

P V T
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∞
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where we consider the following reference condition 

 ( ) ( )ideallim ,V U V T U T∞ =!!!"  (30) 

Also, eq 27 transforms the heat ratio, eq 14, into 
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Now, we can calculate Cv(V,T) from eq 29 and find r(V,T). 
First, the specific heat at constant volume is given by 

 ( ) ( )
2

ideal
2,  ,

V

V V
V

C V T C T P V T dV
T∞ ′

 ∂ ′= +  ∂ 
∫ ′  (32) 

Notice that for any equation of state with a vanishing second 
partial derivative with respect to temperature, CV is identical to 
the ideal gas case. Equation 32 can also be derived from eq 
21c. 

Using eqs (21c, 32), we find that r(V, T) is given by 

 ( ) ( )
ideal

1
1, , constant

ref

T V
V

T V

Cr V T dT P V T dV
TT ∞ ′

∂ ′ ′= + = ∂ ∫ ∫  

  (33) 

where we define a reference temperature as Tref, and the 
following limiting conditions are required 

 ( )lim , 0
V V

P V T
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∂  = ∂ 
 (34) 
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2

2lim , 0
V

V

P V T
T→∞

 ∂
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All points on an adiabatic path satisfy the condition 
expressed by eq 33. For example, if we pick the beginning and 
ending points of the first adiabatic expansion in the Carnot 
cycle, we find 
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These two equations reduce to a final relation between points 
on the adiabatic path 

 ( ) ( )
H m 1

C

ideal
1

C H1
C H

, ,
T V V

V

T V V

C dT P V T dV P V T dV
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In a similar way we find that the points (V2, TC) and (Vo, TH) 
satisfy 

( ) ( )
H 2

C

ideal
1

C H1
H

, ,
oVT V

V

CT V V

C dT P V T dV P V T dV
T TT ∞ ∞′ ′

   ∂ ∂′ ′ ′= −   ∂ ∂  
∫ ∫ ∫ ′  

  (39) 

Because the left hand side of eqs 38 and 39 are the same, we 
can rearrange them to get the following relation: 

( ) ( )
1 2

o m

H C
H C

, ,
V V

V V VV

P V T dV P V T dV
T T

′′

  ∂ ∂′ ′ ′− =  ∂ ∂   
∫ ∫ ′  (40) 

Not only does eq 40 relate the four points that defined the 
adiabatic expansion and compression, but it also relates the 
points of the isothermal processes of the cycle. 

Using eqs 40, 27, and 2, we get that the efficiency of a 
reversible Carnot cycle is 

 C

H
1 T

T
η = −  (41) 

Equation 41 depends only on the reservoir�s temperature. Also 
in our analysis one could use any of the equations of state; 
thus, this analysis in fact stresses the Carnot cycle�s 
independence on material properties of the working substance. 

Discussion 

Our presentation, which is in the spirit of the Caratheodory 
approach [17], is complementary to the usual analysis of the 
reversible Carnot cycle using the ideal gas. Although our 
analysis is general and applies to any equation of state, it 
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stresses the role of an integrating factor, β. In particular, we 
emphasize that 1/T is an integrating factor if and only if the 
following relation is satisfied: 

 
T V

U P T
V T
∂   = − +   ∂ ∂   

P∂  (42) 

As a consequence, β dQrev, 

 
( )rev ,V

T

C V TdQ UdT P dV dS
T T V

 ∂ = + +  ∂  
≡  (43) 

is an exact differential, which defines entropy. Usually, in the 
definition of entropy we include 1/T and assume that dS is an 
exact differential. From this assumption, as we can find in 
every textbook [2�13], we can derive eq 42. In other words, eq 
43 is an exact differential if, and only if, eq 42 is satisfied. 

In summary, our approach emphasizes the existence of an 
integrating factor, Carnot�s statement on the material 
property�s independence, and a relation between V and T for 
the adiabatic portions of the cycle as expressed by eqs 33, 38 
and 39. The existence of the integrating factor implies an exact 
differential, and the general analysis includes any equation of 
state. 
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